METODE AUTOREGRESSIVE INTEGRATE MOVING AVERAGE DALAM PERAMALAN INDEKS HARGA KONSUMEN KOTA DENPASAR

Wayan Gede Suka Parwita(1*), Ni Kadek Nokia Purnama Dewi(2),

(1) Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali
(2) Institut Bisnis dan Teknologi Indonesia, Denpasar, Bali
(*) Corresponding Author

Abstract


One of the indicators used to measure the success of controlling inflation financially is the Consumer Price Index (CPI). The CPI provides information on the average change in the price of a group of goods and services that are generally consumed by households over a certain period of time. The data used in this study is 82 data which is divided into 2 parts, namely in series data as many as 66 data and out series data as many as 16 data, obtained from the Central Statistics Agency of Bali Province (BPS) or www.bali.bps.go.id . The purpose of this study is to use the ARIMA method to compare the forecast data with the data obtained by the author at BPS, and see how accurate the error is from the model used. The results of this study indicate that the best model and has the smallest MSE value is the ARIMA(0,1,1) model with an MSE value of 49.68% While the model that has the smallest MAPE value in the ARIMA (1,1,0) model is 0.53%

Full Text:

PDF

References


M. Hali Mukron, I. Susianti, F. Azzahra, Y. Nur Kumala, F. Risnita Widiyana, and M. Al Haris, “Peramalan Indeks Harga Konsumen Indonesia Menggunakan Autoregressive Integrated Moving Avarage,” J. Stat. Ind. dan Komputasi, vol. 6, no. 1, pp. 20–25, 2021.

R. R. Elvierayani, “Peramalan Nilai Tukar ( Kurs ) Rupiah Terhadap Dolar Tahun 2017 dengan Menggunakan Metode Arima Box-Jenkins,” Pros. SI MaNIs (Seminar Nas. Integr. Mat. dan Nilai Islam., vol. 1, no. 1, pp. 253–261, 2017.

M. B. Pamungkas and A. Wibowo, “Aplikasi Metode Arima Box-,” Indones. J. Public Heal., vol. 13, pp. 181–194, 2018, doi: 10.20473/ijph.vl13il.2018.181-194.

Y. Lohy, “Peramalan Penerimaan Pajak Hotel Dengan Metode Runtun Waktu-Arima,” 2017.

P. S. Matematika and D. N. Samsiah, “Analisis Data Runtun Waktu Menggunakan,” 2008.

G. E. Franco Peña et al., “Analisis Autokorelasi Pada Model Arima,” Αγαη, vol. 8, no. 2, p. 2019, 2010, [Online]. Available: https://barnard.edu/sites/default/files/inline/student_user_guide_for_spss.pdf%0Ahttp://www.ibm.com/support%0Ahttp://www.spss.com/sites/dm-book/legacy/ProgDataMgmt_SPSS17.pdf%0Ahttps://www.neps-data.de/Portals/0/Working Papers/WP_XLV.pdf%0Ahttp://www2.psy.

M. As’ad, S. S. Wibowo, and E. Sophia, “Peramalan Jumlah Mahasiswa Baru Dengan Model Autoregressive Integrated Moving Average (Arima),” J I M P - J. Inform. Merdeka Pasuruan, vol. 2, no. 3, pp. 20–33, 2017, doi: 10.37438/jimp.v2i3.77.

A. Suprayitno, S. Rochaeni, and R. Purnomowati, “Pengaruh Faktor Budaya, Sosial, Pribadi, Dan Psikologi Konsumen Terhadap Keputusan Pembelian Pada Restoran Gado-Gado Boplo (Studi Kasus: Restoran Gado-Gado Boplo Panglima Polim Jakarta


Refbacks

  • There are currently no refbacks.



 

Smart EDU: Buletin Education
Online ISSN: 2828-8025
Organized by Yayasan Adwitiya Basurata Inovasi
Published by Yayasan Adwitiya Basurata Inovasi
W: https://ejournal.abivasi.id/index.php/SmartEDU

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0


Published Papers Indexed/Abstracted By: